Appendix C. Leadhead Codes

A.
Leadhead Grouping
1.

Methods that have a first leadhead that is the same as one of the leadheads found in the Plain Course of Plain Bob or Grandsire have been assigned a code according to the order in which the leadheads occur in its Plain Course. They are a useful shorthand for communicating the Lead order of a Method.

Originally lowercase letters were ascribed and these were later extended with numbers to cover higher stages. In the Framework the codes associated with the letters p, q, r and s have been renumbered to include the leadheads previously omitted before the Differential classes were added.

Methods with Plain Bob leadheads are split into different leadhead groups according to the place notation (where n is the Stage) immediately before the leadhead as follows:

  • Those with even Stages and a lead end place notation of 12 have codes a-f
  • Those with even Stages and a lead end place notation of 1n have codes g-m
  • Those with odd Stages and a lead end place notation of 12n have codes p-q
  • Those with odd Stages and a lead end place notation of 1 have codes r-s

Methods with Grandsire leadheads whose hunt bells have the same path are split into different leadhead groups according to the place notation (where n is the Stage) immediately after the leadhead as follows:

  • Those with odd Stages and a place notation of 3 following the leadhead have codes a-f
  • Those with odd Stages and a place notation of n following the leadhead have codes g-m
  • Those with even Stages and a place notation of 3n following the leadhead have codes p-q
  • Those with even Stages and a place notation of - following the leadhead have codes r-s

Any methods not falling in the above groupings are not given a leadhead code even if they have Plain Bob or Grandsire leadheads.


B.
Plain Bob Leadhead Codes for Even Stages
LH Code
Minimus
Minor
Major
Royal
Maximus
Fourteen
Sixteen
PN12    PN1n
  a           g
1342
135264
13527486
1352749608
13527496E8T0
13527496E8A0BT
13527496E8A0CTDB
  b           h
156342
15738264
1573920486
157392E4T608
157392E4A6B8T0
157392E4A6C8D0BT
  c           j
17856342
1795038264
1795E3T20486
1795E3A2B4T608
1795E3A2C4D6B8T0
  c1         j1
1907856342
19E7T5038264
19E7A5B3T20486
19E7A5C3D2B4T608
  c2         j2
1ET907856342
1EA9B7T5038264
1EA9C7D5B3T20486
  c3         j3
1ABET907856342
1ACED9B7T5038264
  c4         j4
1CDABET907856342
  d4         k4
1DBCTA0E89674523
  d3         k3
1BTA0E89674523
1BTD0C8A6E492735
  d2         k2
1T0E89674523
1T0B8A6E492735
1T0B8D6C4A2E3957
  d1         k1
1089674523
108T6E492735
108T6B4A2E3957
108T6B4D2C3A5E79
  d           k
18674523
1860492735
18604T2E3957
18604T2B3A5E79
18604T2B3D5C7A9E
  e           l
164523
16482735
1648203957
1648203T5E79
1648203T5B7A9E
1648203T5B7D9CEA
  f            m
1423
142635
14263857
1426385079
142638507T9E
142638507T9BEA
142638507T9BEDAC


C.
Plain Bob Leadhead Codes for Odd Stages
LH Code
Doubles
Triples
Caters
Cinques
Sextuples
Septuples
Octuples
PN12n    PN1
  p            r
13524
1352746
135274968
13527496E80
13527496E8A0T
13527496E8A0CTB
13527496E8A0CTFBD
  p1          r1
15432
1573624
157392846
157392E4068
157392E4A6T80
157392E4A6C8B0T
157392E4A6C8F0DTB
  p2          r2
1765432
179583624
1795E302846
1795E3A2T4068
1795E3A2C4B6T80
1795E3A2C4F6D8B0T
  p3          r3
198765432
19E70583624
19E7A5T302846
19E7A5C3B2T4068
19E7A5C3F2D4B6T80
  p4          r4
1E098765432
1EA9T70583624
1EA9C7B5T302846
1EA9C7F5D3B2T4068
  p5          r5
1ATE098765432
1ACEB9T70583624
1ACEF9D7B5T302846
  p6          r6
1CBATE098765432
1CFADEB9T70583624
  p7          r7
1FDCBATE098765432
  q6          s6
1DBFTC0A8E6947253
  q5          s5
1BTC0A8E6947253
1BTD0F8C6A4E29375
  q4          s4
1T0A8E6947253
1T0B8C6A4E29375
1T0B8D6F4C2A3E597
  q3          s3
108E6947253
108T6A4E29375
108T6B4C2A3E597
108T6B4D2F3C5A7E9
  q2          s2
186947253
18604E29375
18604T2A3E597
18604T2B3C5A7E9
18604T2B3D5F7C9AE
  q1          s1
1647253
164829375
1648203E597
1648203T5A7E9
1648203T5B7C9AE
1648203T5B7D9FECA
  q            s
14253
1426375
142638597
142638507E9
142638507T9AE
142638507T9BECA
142638507T9BEDAFC


D.
Grandsire Leadhead Codes for Odd Stages
LH Code
Doubles
Triples
Caters
Cinques
Sextuples
Septuples
Octuples
PN3      PNn
  a           g
12534
1253746
125374968
12537496E80
12537496E8A0T
12537496E8A0CTB
12537496E8A0CTFBD
  b           h
1275634
127593846
127593E4068
127593E4A6T80
127593E4A6C8B0T
127593E4A6C8F0DTB
  c           j
129785634
1297E503846
1297E5A3T4068
1297E5A3C4B6T80
1297E5A3C4F6D8B0T
  c1         j1
12E90785634
12E9A7T503846
12E9A7C5B3T4068
12E9A7C5F3D4B6T80
  c2         j2
12AET90785634
12AEC9B7T503846
12AEC9F7D5B3T4068
  c3         j3
12CABET90785634
12CAFED9B7T503846
  c4         j4
12FCDABET90785634
  d4         k4
12DFBCTA0E8967453
  d3         k3
12BCTA0E8967453
12BDTF0C8A6E49375
  d2         k2
12TA0E8967453
12TB0C8A6E49375
12TB0D8F6C4A3E597
  d1         k1
120E8967453
120T8A6E49375
120T8B6C4A3E597
120T8B6D4F3C5A7E9
  d           k
128967453
12806E49375
12806T4A3E597
12806T4B3C5A7E9
12806T4B3D5F7C9AE
  e           l
1267453
126849375
1268403E597
1268403T5A7E9
1268403T5B7C9AE
1268403T5B7D9FECA
  f            m
12453
1246375
124638597
124638507E9
124638507T9AE
124638507T9BECA
124638507T9BEDAFC


E.
Grandsire Leadhead Codes for Even Stages
LH Code
Minimus
Minor
Major
Royal
Maximus
Fourteen
Sixteen
PN3n      PN-
  p            r
125364
12537486
1253749608
12537496E8T0
12537496E8A0BT
12537496E8A0CTDB
  p1          r1
12758364
1275930486
127593E4T608
127593E4A6B8T0
127593E4A6C8D0BT
  p2          r2
1297058364
1297E5T30486
1297E5A3B4T608
1297E5A3C4D6B8T0
  p3          r3
12E9T7058364
12E9A7B5T30486
12E9A7C5D3B4T608
  p4          r4
12AEB9T7058364
12AEC9D7B5T30486
  p5          r5
12CADEB9T7058364
  q6          s6
12DCBATE09876543
  q5          s5
12BATE09876543
12BDTC0A8E694735
  q4          s4
12TE09876543
12TB0A8E694735
12TB0D8C6A4E3957
  q3          s3
1209876543
120T8E694735
120T8B6A4E3957
120T8B6D4C3A5E79
  q2          s2
12876543
1280694735
12806T4E3957
12806T4B3A5E79
12806T4B3D5C7A9E
  q1          s1
126543
12684735
1268403957
1268403T5E79
1268403T5B7A9E
1268403T5B7D9CEA
  q            s
1243
124635
12463857
1246385079
124638507T9E
124638507T9BEA
124638507T9BEDAC


F.
Alternative Leadhead Code System
1.

As an alternative to the letter codes shown above, Methods with Plain Bob Leadheads can be coded according to the number of Plain Leads of Plain Bob that it takes to reach the same Leadhead as it does with one Plain Lead of the Method in question.

Example 1: The first Leadhead of Cambridge Surprise Major is 15738264. This same Leadhead would be reached by ringing two Plain Leads of Plain Bob Major. Cambridge Surprise Major is therefore referred to as a "+2" Method.

Example 2: The first Leadhead of London Surprise Minor is 142635. This same Leadhead would be reached by ringing four Plain Leads of Plain Bob Minor. Going forward for four Plain Leads of Plain Bob Minor reaches the same Leadhead as going backwards for one Plain Lead, so London Surprise Minor is referred to as a "-1" method.
Pluses are used up to and including the halfway point of a Plain Course of Plain Bob, and minuses are used after the halfway point of the Plain Course. So in Minor, the codes would range from -2 to +2, in Triples the codes would range from -2 to +3, in Major the codes would range from -3 to +3, and so on.

For Plain Bob Leadhead Methods where nth's Place rather than 2nd's Place is made at the Leadend Change (where n is the Stage), the letter 'n' is added to the code.

Example 3: The first Leadhead of Bristol Surprise Major is 14263857 and Bristol S Major is an 8th's Place Leadend Method. Bristol S Major is therefore referred to as a "-1n" Method.

Methods that have one Plain Lead in their Plain Course are referred to as "+0" Methods.

Note that this alternative Leadhead code system is usually only used for Plain Bob Leadhead Methods with even Stages, and not for Plain Bob Leadhead Methods with odd Stages, nor for Grandsire Leadhead Methods.

2.
The following tables show the mapping between the codes shown in Appendix C.B above and the alternative Leadhead codes:
Appendix C.B code
Alternative Leadhead code
a
+1
b
+2
c
+3
c1
+4
c2
+5
c3
+6
c4
+7
d4
-7
d3
-6
d2
-5
d1
-4
d
-3
e
-2
f
-1
 
 
Appendix C.B code
Alternative Leadhead code
g
+1n
h
+2n
j
+3n
j1
+4n
j2
+5n
j3
+6n
j4
+7n
k4
-7n
k3
-6n
k2
-5n
k1
-4n
k
-3n
l
-2n
m
-1n